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Carbon dioxide must be removed from the atmosphere to limit climate change to 2°C or less. The integrated assessment models used to develop
climate policy acknowledge the need to implement net negative carbon emission strategies, including bioenergy with carbon capture and storage
(BECCS), to meet global climate imperatives. The implications of BECCS for the food, water, energy, biodiversity, and social systems (FWEBS)
nexus at regional scales, however, remain unclear. Here, we present an interdisciplinary research framework to examine the trade-offs as well as
the opportunities among BECCS scenarios and FWEBS on regional scales using the Upper Missouri River Basin (UMRB) as a case study. We
describe the physical, biological, and social attributes of the UMRB, and we use grassland bird populations as an example of how biodiversity
is influenced by energy transitions, including BECCS. We then outline a “conservation” BECCS strategy that incorporates societal values and

emphasizes biodiversity conservation.
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tmospheric concentrations of carbon dioxide (CO,)
and other greenhouse gases (GHGs) continue to
increase as a result of land-use change, fossil energy pro-
duction, and other anthropogenic activities (Le Quéré
et al. 2013). To ameliorate the impact of GHGs on cli-
mate, international negotiations led by the United Nations
Framework Convention on Climate Change (UNFCCC) tar-
get a 2°C maximum increase in global average temperature
(Meinshausen et al. 2009), assumed to be a “safe” threshold
for climate change. The Paris Agreement, signed on 22 April
2016 by 195 countries, takes this effort a step further by pur-
suing efforts to limit warming to 1.5°C (Hulme 2016, Rogelj
etal. 2016). Such targets guide policy scenarios for fossil-fuel
management via integrated assessment models (IAMs) to
achieve climate stabilization (Moss et al. 2010).

Integrated assessment models emphasize interactions
among global economic, energy, land-use, and technology
systems (Jones et al. 2013, Collins et al. 2015) and play a
major role in climate-change-mitigation policy, with large
implications for Earth-system management (Schellnhuber
1999, Barros 2014, Stocker 2014). Since the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change
(IPCC ARS5; IPCC 2014), the development of global GHG
reduction scenarios via IAMs has shifted to emphasize net
negative CO, emission—that is, net carbon sequestration.
This is because GHG emissions will now peak later than
previously hoped and atmospheric GHG concentrations will
decline less steeply than necessary to avoid climate warming
of 2°C or less (Rockstrom et al. 2017).

Negative CO, emission pathways rely on emerging tech-
nologies, including bioenergy with carbon capture and stor-
age (BECCS; Kriegler et al. 2013, van Vuuren et al. 2013),
in which biomass is used to generate energy and CO, is
removed from the atmosphere through geologic sequestra-
tion or by enhancing natural carbon (C) storage (Fuss et al.
2013, Smith et al. 2015). The proposed BECCS economy
is important to modeling efforts in the latest IPCC AR5
(Tavoni et al. 2014) and continues to play a large role in the
shared socioeconomic pathways (SSPs) of the forthcoming
Sixth IPCC Assessment Report (Lotze-Campen et al. 2013,
Riahi et al. 2017). To meet the goals of the Paris Agreement,
global anthropogenic CO, emissions need to be reduced
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Figure 1. The Upper Missouri River Basin (UMRB) is defined as the region upriver from the confluence of the Big Sioux
and Missouri Rivers in Sioux City, Iowa (excluding the Niobrara watershed), with major land-use classifications and

administrative (state and reservation) boundaries.

by approximately half every decade, and atmospheric CO,
removal needs to approach 5 metric gigatons per year with
no net land-use emissions—including those due to land-use
change—by 2050 (Rockstrom et al. 2017), underscoring the
importance of adopting CO, removal techniques such as
BECCS globally.

Although BECCS may make sense in global climate sce-
narios, the implications of BECCS for food security, clean
energy, water resources, biodiversity, social systems, and
other attributes of value to society at regional scales are less
clear (Rhodes and Keith 2008, Bonsch et al. 2014, Tian et al.
2016). Despite the importance of BECCS in the UNFCCC
process, environmental and socioeconomic trade-offs for
large-scale deployment of BECCS are poorly considered in
regional studies and are of growing concern, calling into
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question the overall validity of IAMs as they guide policy
(Fuss et al. 2014, Smith et al. 2015, Zilberman 2015).

Here, we describe an interdisciplinary framework for
analyzing the trade-offs and opportunities among emerging
BECCS strategies and the regional food, water, energy, bio-
diversity, and social systems (FWEBS) that they affect across
a diverse and changing region of North America, the Upper
Missouri River Basin (UMRB; figure 1). We first describe
the FWEBS research framework (figure 2) and characterize
the UMRB as a case study for regional BECCS implementa-
tion; we then discuss how scenario development can help us
understand its interaction with the FWEBS nexus (figure 3).
The discussion is guided by our goal to understand whether
negative CO, emissions can be reached in the UMRB, under
what land-use configurations, and at what cost or benefit to
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Figure 2. Conceptual diagrams following Foley and
colleagues (2005) for business-as-usual scenarios,
“aggressive” bioenergy with carbon capture and storage
(BECCS) scenarios, and “conservation” BECCS scenarios
that integrate sustainable management of the food, water,
energy, biodiversity, and social systems (FWEBS) nexus.
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local communities and ecosystem (as well as Earth-system)
services.

The food, water, energy, biodiversity, and social-
systems research framework

The implementation of a BECCS-based economy will affect
multiple ecosystem and societal services, including water
quality and supply (Popp et al. 2014, Albanito et al. 2015),
human nutrition (Tilman and Clark 2014), technology
(Baum 2014), regional economics (Muratori et al. 2016),
biodiversity (Powell and Lenton 2013), and cultural eco-
system services (Galaz 2012, Scholes 2016). The processes
influenced by regional BECCS strategies must be studied
in concert; we need to take into account how to provide for
society’s growing demand for food, water, and energy while
maintaining biodiversity, ecosystem services, and economic
and social systems, including cultural values and identity,
social networks, and livelihoods. The interconnectedness of
these systems that support human well-being and lifestyles
is increasingly evident and has led researchers to approach
these systems as a nexus—the water—energy-food (WEF)
nexus—for identifying cross-sector efficiencies (Scanlon
et al. 2017) and to develop solutions to pressing resource
challenges without unintended consequences (Scott et al.
2015). Each system within the WEF nexus can be viewed
as a socioecological system comprising biophysical com-
ponents and human components that are characterized by
dynamic feedback loops. BECCS approaches that emphasize
terrestrial C storage may prove technically feasible, but in
the context of the WEF nexus, their implications for regional
economies may make such approaches socially impractical.
Scholars, practitioners, and policymakers have promoted the
WEF nexus as a conceptual tool for approaching sustain-
ability, including the United Nations sustainable develop-
ment goals (SDGs), and protecting against potential risks of
future water, energy, and food insecurity (Biggs et al. 2015).
However, research frameworks for nexus thinking often fail
to incorporate biodiversity and other ecosystem services, as
well as social dimensions such as livelihoods (Biggs et al.
2015).

In order to address this shortcoming regarding the WEF
nexus, we propose a research framework that explicity con-
siders biodiversity and social systems as part of the WEF
nexus in what we present here as the FWEBS nexus (figures 2
and 3). It is expected that a FWEBS research framework
that explicitly accounts for biodiversity and social systems
will allow us to more comprehensively examine trade-offs
and opportunities with various climate change and climate
mitigation scenarios including BECCS. We anticipate that
others can adapt the FWEBS framework for application
and testing in other regions, including low-, middle-, and
high-income countries. In addition, it is expected that the
FWEBS framework can be widely applied by practitioners,
scientists, and policymakers to develop and monitor policy
and management plans in regional- and global-climate and
sustainable-development agendas.
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Figure 3. The interaction among climate change and bioenergy with carbon
capture and storage (BECCS) scenarios, with key attributes of the food, water,
energy, biodiversity, and social systems (FWEBS) nexus, including the domain
in which coupled interactions in the Upper Missouri River Basin will be

modeled.

The Upper Missouri River Basin

For the purposes of this study, we consider the Upper
Missouri River Basin to be upriver of confluence of the
Missouri and Big Sioux Rivers in Sioux City, Iowa, exclud-
ing the Niobrara watershed. By any definition, the UMRB
extends from the Crown-of-the-Continent headwaters in
Montana and the Front Range of Wyoming to the Prairie
Pothole region of North and South Dakota (figure 1). The
UMRB as we define it is dominated by the states of Montana,
North Dakota, South Dakota, and Wyoming (and small
parts of Canada, Iowa, Minnesota, and Nebraska). It repre-
sents some 30% of wheat production in the United States,
13% of soybean production, 11% of cattle production, and
9% of corn production, the last concentrated in the eastern
Dakotas. Most of the region is rural, and only Alaska has a
lower population density among US states than Wyoming,
Montana, North Dakota, and South Dakota. The largest city
in the UMRB, Sioux Falls in South Dakota, has a population
of approximately 175,000. The UMRB encompasses diverse
land uses and land-use trajectories, climate attributes, and
social and cultural geographies, as well as carbon capture
and storage (CCS) potential, all of which must be considered
when understanding the consequences and opportunities of
BECCS.

Land management. Over the past decade, land-use practices
in the agricultural and industrial sectors of the UMRB
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for soil C sequestration and biodiversity
(Claassen 2011). Expansion of oil and
gas production since the mid-2000s has
also created new hybrid landscapes in
which agricultural- and energy-produc-
tion demands for water and land inter-
sect in complex ways.

Land management across the UMRB
changes distinctly from west to east, and more than 20
Native American tribes manage tens of thousands of square
kilometers within the UMRB (figure 1). The capacity of
tribes to influence regional land- and water-use patterns is
gaining momentum, as has been demonstrated, for example,
by the active restoration of native species on tribal lands and
worldwide sympathy for the Water Protectors movement
(e.g., Elbein 2017). Together, these trends add complexity
to the social dimensions of land management (Hendrickson
et al. 2016) and their influence on the FWEBS nexus in a
rapidly changing region with ongoing fossil-fuel extraction
(Jackson et al. 2014) and associated CCS potential.

Climate. High decadal climate variability and warming tem-
perature trends, especially during winter (figure 6), are
superimposed on this matrix of changing land cover (Mehta
et al. 2013), raising concerns about the resiliency of existing
socioeconomic systems and food security faced with unprec-
edented climate change (Seifert and Lobell 2015, Cook et al.
2015). Interestingly, climatological summer (June, July, and
August) temperatures may have cooled across parts of the
UMRB from the 1970s until 2015 (figure 6), similar to the
adjacent Canadian Prairie Provinces, for reasons thought to
be due in part to changes in land management, including the
reduction of summer fallow and the widespread adoption
of no-till agriculture (Gameda et al. 2007, Vick et al. 2016),
although 2017 brought an acute summer drought to much of

https://academic.oup.com/bioscience
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Figure 4. Recent trends in land cover (2001-2011) and the percentage of total land-cover area (2011) in the Upper
Missouri River Basin. The cover classes of similar type were aggregated to a common class (e.g., four urban classes

were collapsed into a single class). The “other” cover class includes water, wetlands, and barren and are subject to the
interannual variability of the exposed shoreline of reservoirs, as well as misclassification errors given the ephemerality of
wetlands and/or irrigation practices. The data were obtained from the National Land Cover Database (Homer et al. 2007,

Fry et al. 2012, Homer et al. 2015).

the UMRB. General circulation models (GCMs) agree that
annual average temperatures in the UMRB will continue to
increase, using the bias-corrected ensemble Representative
Concentration Pathway (RCP) 8.5 predictions as an upper
limit to expected future temperature changes in figure 7,
but it remains unclear how future changes in land manage-
ment, including BECCS strategies, will affect water, energy,
and GHG balances and thereby global and regional climate
(Hallgren et al. 2013, DeLucia 2015).

Carbon capture and storage. Carbon capture and storage efforts
can be internal or external to any region for global BECCS to
take place (e.g., Muratori et al. 2016). The UMRB and sur-
rounding regions have extensive carbon storage potential in
geologic formations (Litynski et al. 2009), and a number of
CCS test sites have been established by the Big Sky Carbon
Sequestration Partnership in carbonate formations (e.g.,
Kevin Dome, Montana), in deep basalts in Washington State,
in depleted oil reservoirs or for enhanced oil recovery, and
with respect to enhanced coal-bed methane in the Powder
River Basin of Montana and Wyoming within the UMRB,
where it was found that additional incentives were required

to make CCS economical. Initial storage resource estimations
indicate large storage potential, but implementation of the
Environmental Protection Agency’s Underground Injection
Control (UIC) Class VI regulations for CO, injection defines
underground drinking water sources by salinity only, not
allowing exemptions available under other UIC well classes.
This rule will reduce the geologic carbon storage potential
in the UMRB owing to fresh water recharge of formations
at basin edges. The UMRB also has the potential to store C
in agricultural soils given the widespread adoption of no-till
agriculture (West and Post 2002, Watts et al. 2011) and the
ongoing decline of the practice of summer fallow, which rep-
resents a source of CO, to the atmosphere (Merrill et al. 1999,
Vick et al. 2016). In other words, select CCS efforts are pos-
sible within the UMRB and interact with the FWEBS nexus.

Food, water, energy, biodiversity, and social systems
in the Upper Missouri River Basin

We discuss the FWEBS nexus as it applies to the UMRB
sequentially, noting of course the interactions among food,
water, energy, biodiversity, and social systems that we high-
light in part in supplemental appendix SI.
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states that constitute the greatest area of the Upper Missouri River Basin, as we

defined in figure 1.

Food. BECCS presents unique opportunities and trade-offs
with the FWEBS nexus in the UMRB (figure 2). Agriculture
in the western UMRB is concentrated on the production
of feed crops and animal products, with limited inroads by
bioenergy production at the present, mainly due to the high
value placed on food and, to some degree, climatic condi-
tions. Bioenergy production is currently more prominent
in the eastern UMRB and is largely derived from standard
agricultural row crops, such as corn-grain ethanol. Common
crops in the western UMRB include winter and spring
wheat, with a growing influence of “pulse” legumes, such
as lentils and peas (Burgess et al. 2012). Corn and soybeans
dominate the eastern UMRB and continue to increase in
area (figure 4). Large swaths of the UMRB remain in native
grasslands used for range-cattle production (Gascoigne et al.
2013).

More diverse cropping systems, including pulse crops, are
improving regional soil quality in the western UMRB (Miller
et al. 2015), especially versus alternative management prac-
tices such as summer fallow, which is still common in parts
of Montana but detrimental to soil C (Merrill et al. 1999,
Vick et al. 2016). If managed appropriately, fallow replace-
ment with pulses can grant economic benefits to producers,
resulting in a win-win from both economic and climate
perspectives (Bagley et al. 2015, Miller et al. 2015). Increases
in the areal extent of pulse crops and oilseed bioenergy
production have followed incentives from the US Farm Bill,
but it remains to be seen whether enhanced bioenergy and
pulse cropping is economically viable in a variable climate
(Cutforth et al. 2007) and whether biofertilizers, such as
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resources and major difficulties in adju-
dicating interjurisdictional and Tribal
water rights. The response of water-use
issues to a BECCS economy given cur-
rent conflicts and with a changing cli-
mate requires additional research (Smith
et al. 2015).

Trends in water quality emphasize the
scalar mismatch between land-use dynamics and existing
governance frameworks (Allred et al. 2015). For example,
the onset of new land and water uses associated with the
rapid expansion of hydraulic fracturing activities in the
region revealed the limits of existing regulatory frameworks
and the limited capacity of state and local governments for
oversight, monitoring, and enforcement. Environmental
monitoring provides insight about aggregate land-use effects
such as the management of resource extraction and energy
production waste (Bauder et al. 1993, Stackpoole et al. 2014)
and would need to be expanded to account for additional
impacts of BECCS strategies on agricultural and industrial
practices, as well as biodiversity and other FWEBS attributes.

2015

Energy. The energy industry of the UMRB is dominated by
conventional systems, namely fossil fuels and large-scale
hydropower, despite substantial solar and wind resources
(Elliot et al. 1992, Lopez et al. 2012). For example, the
Colstrip power plant in eastern Montana is the second-
largest coal-fired generating facility west of the Mississippi
River and produces approximately 45% of Montana’s total
CO2 emissions. The energy industry is changing rapidly
(e.g., two units of the Colstrip plant are slated for decommis-
sioning), providing new opportunities such as retrofitting
power generators to use alternative fuels or spare transmis-
sion capacity for development of new generation facilities
(Cao and Caldeira 2010).

The dramatic expansion of oil and gas extraction in the
UMRB includes the mid-2000s coal-bed methane boom in
the Powder River Basin and the 2004-2014 Bakken shale-oil

https://academic.oup.com/bioscience
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Figure 6. Decadal trends in summer (JJA) and winter (DJF) temperature from 1970 until 2015 in the region, including
and surrounding the Upper Missouri River Basin (figure 1) from the Climatic Research Unit (CRU) database (Harris et al.

2013).

boom. These activities have resulted in an approximately
700% increase in regional crude-oil production between
2000 and 2017 and nearly a 400% increase in natural-gas
production, along with new pressures on already limited
water resources (Jackson et al. 2014). Energy production
could potentially be coupled with geological CCS (Eccles
et al. 2012) or the removal of atmospheric CO, by ecosys-
tems (Zhu et al. 2014), with both approaches demonstrating
high potential in the UMRB (West and Post 2002, Litynski
et al. 2009).

The feasibility of CCS, via public and political acceptance
of such technology and its risks, is not clearly quantified.
Using natural ecosystems to store carbon may also be prob-
lematic because of climatic constraints within the UMRB
that limit net primary production. Potential reductions in
carbon storage in carbon-rich grasslands converted to crops
or woody vegetation must be taken into consideration when
accounting for net atmospheric CO, removal (Jackson et al.
2002, Gelfand et al. 2011). The existing matrix of coal- and
natural-gas-based energy production and carbon sequestra-
tion from geologic and natural ecosystems in the UMRB
provides a rich opportunity for interdisciplinary research
(Humpendder et al. 2014).

Bioenergy expansion in the western UMRB would require
substantial economic incentives because of strong and
sustained markets for high-quality food production, par-
ticularly cereals and beef. Bioenergy production may also
become more financially competitive under projected cli-
mate change or with advancements in new bioenergy

(including biofuel) crop cultivars (Berdahl et al. 2005, Gesch
et al. 2015). The expanded adoption of bioenergy ultimately
rests on economic viability but also intersects with cultural
values, including biodiversity protection, that likewise influ-
ence decision-making.

Biodiversity. It is estimated that 70% of the grasslands in the
Great Plains have been converted to other land uses. Those
that remain are crucial reservoirs of biodiversity (Samson
et al. 2004). The UMRB has attracted public and private
ecological restoration efforts at local to landscape scales, but
recent reductions of Conservation Reserve Program (CRP)
lands (figure 5), native grasslands, and wetlands (Johnston
2013, Wright and Wimberly 2013) are key examples of how
quickly land management can respond to economic drivers
and associated changes in policy. Intensively managed agri-
cultural landscapes can provide habitat, but conversion of
CRP, native grasslands, and wetlands to agriculture—espe-
cially row-crop production (Brown et al. 2005)—can have
strong negative impacts on biodiversity (Best et al. 1995,
Lehtinen et al. 1999). These impacts extend beyond direct
habitat loss (see supplemental appendix S1); for example,
water quality and contaminant exposure pose a range of seri-
ous risks to amphibians, from direct mortality (Relyea 2005)
to endocrine disruption (Hayes et al. 2002), emphasizing the
need to study connections within the FWEBS nexus.

Social systems. It is expected that BECCS expansion in the
UMRB will influence social systems via impacts on farm
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economics and overall livelihoods, competition for land and
labor, working conditions and renumeration for workers,
governmental policies, cultural ecosystem services, and food
security. Some social systems, such as regional econom-
ics, are readily quantifiable and can be directly compared.
Other social systems, such as values and traditions, are often
less meaningful when expressed in monetary terms (Daily
et al. 2009), but they have important social value (Bagstad
et al. 2015) and play an important role in decision-making
(Wainger et al. 2010). For example, Native American and
rural communities in Montana rely on hunting and harvest-
ing of wild edible plants for cultural identity, food sover-
eignty, family ties to previous generation, and health benefits
(Byker Shanks et al. 2015). Considering diverse stakeholder
perspectives, attitudes, and decisions in response to the
potential expansion of BECCS in the UMRB will allow us to
elucidate barriers and opportunities for BECCS implemen-
tation. For example, meat production, including rangeland
and cropland for growing animal feed, is the largest land use
in the eastern UMRB, and much of this land could be used
for bioenergy production (Langholtz et al. 2016), but there
are strongly held values toward animal agriculture and meat
consumption that make such land-use changes more dif-
ficult (Foley et al. 2011, Turner et al. 2014, Langholtz et al.
2016). Previous research suggests that bioenergy expan-
sion can compete for land and labor resources and result
in increased food prices that ultimately lead to higher food
insecurity, particularly for low-income and landless popula-
tions as affordable food becomes less accessible (Miiller et al.
2008, Ewing and Msangi 2009). On the other hand, higher
food prices can stimulate the agricultural sector and cre-
ate new opportunities for rural communities (Miiller et al.
2008), including increased purchasing power and enhanced
resilience to market instability (Ewing and Msangi 2009).

In summary, all elements of the FWEBS nexus interact
with BECCS strategies in the UMRB and elsewhere, and
understanding the complex trade-offs, as well as opportuni-
ties, of multiple BECCS approaches across different spatial
and temporal scales requires careful attention to each attri-
bute as well as their interactions.

Developing regional bioenergy with carbon capture
and storage scenarios for assessing ecological

and socioeconomic interactions

To examine the critical trade-offs and opportunities of alter-
native BECCS strategies within the FWEBS nexus at regional
scales such as the UMRB, researchers must define a set of
plausible scenarios for achieving negative CO, emissions.
The definition of scenarios has itself become a complex
area of study, with varying definitions of what constitutes
a scenario across different disciplines and applications (van
Vuuren et al. 2012). The general strategy for developing
scenarios for global-change assessment typically involves
using qualitative descriptions, such as narratives or sto-
rylines, that characterize a broad array of possible futures
and then developing increasingly quantitative assumptions

consistent with the broad narratives to inform specific mod-
eling exercises (Moss et al. 2010, Rounsevell and Metzger
2010). Increasingly, interdisciplinary processes are being
used to develop scenarios with more robust qualitative and
quantitative assumptions and better recognition of feedback
processes in human and ecological systems, such as the latest
SSPs for assessing climate mitigation and adaptation (O’'Neill
et al. 2017). Despite substantial efforts in scenario develop-
ment, “downscaling” broad narratives to regional scales
remains a challenge, because broad narratives do not easily
align with local contexts (Kriegler et al. 2012).

Rather than propose specific quantitative scenarios here,
we discuss general narratives for developing scenarios that
can inform a regional analysis of BECCS impacts on FWEBS
in the UMRB. Achieving net negative CO, emissions in
the UMRB could conceivably be achieved by implement-
ing a wide range of mitigation and adaptation measures,
although as we have noted, these may conflict with other
management goals (figure 2). We propose, as a starting
point, two general narratives that capture the extremes of a
continuum of BECCS-related strategies. At one extreme, an
aggressive BECCS approach would emphasize technological
and land-intensive approaches, including geological CCS,
producing bioenergy crops for electricity and fuel (to dis-
place fossil sources) and increasing electricity production
from renewable sources as part of a broader energy transi-
tion (figure 2). At the other extreme, a conservation BECCS
approach would emphasize more land-extensive approaches,
including biological and geological carbon sequestration
through soil-management practices and CCS (Chabbi et al.
2017), afforestation and avoided land conversion, and the
production of perennial cellulosic bioenergy crops. Whereas
the conservation BECCS approach may miss some oppor-
tunities to sequester C, such a strategy may align BECCS
with other ecosystem services and cultural values, including
biodiversity conservation. These general narratives provide
a framework for assessing FWEBS trade-offs and opportu-
nities along a continuum of quantitative scenarios between
aggressive and conservation, all of which can be compared
to business-as-usual or status-quo alternatives. The general
narratives also fit within, and must ultimately be consistent
with, existing broader global-change storylines, such as the
latest RCP and SSP storylines (O’Neill et al. 2017).

Crucial to refining quantitative BECCS scenarios for ana-
lyzing potential future conditions in the UMRB is an appre-
ciation for local context—local socioeconomic conditions,
technologies, and institutions—which ultimately determines
the feasibility and impacts of alternative BECCS strategies.
Incorporating such local context will ultimately require an
iterative process, including interdisciplinary scientists and
local stakeholder experts, whereby scenario assumptions
are tested and refined both through modeling exercises and
stakeholder feedback (Sleeter et al. 2012). The interactions
between local attributes of the FWEBS nexus and human
response will determine the extent to which aggressive,
conservation, or other BECCS strategies are technically
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feasible, socially acceptable, and economically sustainable.
By working with local experts and stakeholders in an itera-
tive process, researchers can define a limited set of alterna-
tive quantitative scenarios that can achieve net negative
CO, emissions (if technically possible) and, given those sce-
narios, determine the key FWEBS trade-offs needed to guide
regional-scale policymaking. Such an effort must also point
to synergistic interactions that may provide opportunities
to improve multiple factors in the FWEBS nexus (figure 2).
How will different elements of the FWEBS nexus change
as BECCS development becomes more prominent, and, as
has been demonstrated by the case study of biodiversity
(appendix S1), could “conservation” BECCS scenarios be
developed that satisfy multiple societal objectives (figure 2)?
Alternatively, are aggressive BECCS strategies necessary to
mitigate climate warming such that hard compromises will
have to be made regarding FWEBS and other ecosystem and
Earth-system services (Boysen et al. 2017, Rockstrom et al.
2017)? We hypothesize that business-as-usual strategies
provide insufficient atmospheric C removal and aggressive
BECCS strategies may present too many conflicts with the
FWEBS nexus to become adopted. Thus, a conservation
BECCS strategy that relies on a balanced array of BECCS
activities (from geological and biological CSS to cellulosic
ethanol and non-BECCS renewable energy) designed to
minimize socioeconomic trade-offs while simultaneously
benefitting biodiversity conservation may be the only real-
istic approach to serve multiple societal objectives in the
UMRB and likely other global regions. Testing such a
hypothesis requires a highly multidisciplinary approach that
combines surveys and interviews of perceptions to BECCS
and data-informed models of economic, biogeochemical,
hydrological, biodiversity, and climate systems that capture
the feedback loops and interrelationships between system
drivers and outcomes (figure 3). New regulatory and incen-
tivization approaches to guide multiple actors, including
industry, governments, and individuals, toward behaviors
that help us become positive actors in the climate system are
ultimately needed. To do so, we must design BECCS strate-
gies and contrast them against alternate strategies to find the
correct balance among atmospheric C removal, likelihood of
adoption, and ecological and socioeconomic sustainability.
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Appendix A: Bird populations as a case study of BECCS interactions
Bird populations within the UMRB present an ideal case study for understanding how changes in coupled
food, energy, and water systems impact biodiversity and interact with societal values. Grasslands
comprise a significant portion of the land cover in the UMRB (Figures 1 & 4) and grassland birds have
undergone the greatest recent population declines of any avian habitat guild in North America (Sauer et
al. 2013; Schipper et al. 2016). These declines are largely attributed to habitat loss and degradation
(Samson and Knopf 1994; Hill et al. 2014), although other factors such as insecticide toxicity (Mineau
and Whiteside 2013) and climate change (Gorzo et al. 2016) play important roles. Conversion of
grasslands to cropland in the western Corn Belt of North America, including the eastern portions of the
UMRSB study area, has accelerated recently with high prices for corn and soybeans associated with the
expanding biofuels industry (Wright and Wimberly 2013). Land-use change and river flow regulation in
the UMRB associated with energy development (wind, biofuels, and hydropower) has affected regional
biodiversity, including impacts on bird populations associated with grassland, wetland and riparian
systems (Dixon et al. 2012; Fargione et al. 2012; Hill et al. 2014; Sohl 2014; Munes et al. 2015; Rashford
et al. 2015). The impacts of geologic CCS on bird populations is less clear. Continued land use change in
response to food, energy, and water pressures is likely to further affect bird populations and productivity,
but these impacts are poorly known. Expansion of BECCS in the UMRB has the potential to greatly
impact abundance and diversity for birds of grassland and other habitat types within the region.
Particularly important to grassland birds are bioenergy crops and wind energy under BECCS scenarios,
which would likely put more grasslands (including restored prairie, CRP grasslands, and dedicated
bioenergy crops) on the landscape (Figure 2).

Other impacts of land cover change on bird biodiversity are indirectly related to human pressures.
For example, native prairie provides high quality nesting habitat for grassland birds, but the extensive
grasslands of the UMRB have been greatly fragmented and degraded (e.g., by invasive non-native plant
species and encroachment of woody vegetation), with subsequent impacts on bird populations (Samson

and Knopf 1994). Encroachment of woody vegetation into grasslands has negative effects on occurrence,
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abundance and nesting success of grassland birds in the UMRB (Samson and Knopf 1994; Grant et al.
2004; Greer et al. 2016), and often has a negative impact on soil C stocks (Jackson et al. 2002). Similarly,
exotic grasses and other invasive plants in grasslands also tend to negatively impact bird populations
across the Northern Prairie region of North America (Bakker and Higgins 2009; Greer et al. 2016). In
addition, a number of grassland bird species are area-sensitive, showing negative population responses as
grassland patch size decreases (Davis 2004). This area sensitivity is not always consistent among species
or studies (Walk et al. 2010; Greer et al. 2016), and such factors as edge-to-interior ratio, vegetation
characteristics, and landscape-scale habitat characteristics may modify area sensitivity for grassland birds
in the UMRB (Bakker et al. 2002; Davis 2004; Ribic et al. 2009). At the local patch scale, bare ground,
vegetation height, and litter depth are consistent predictors of habitat occupancy by grassland birds (and
are also relevant for the regional C cycle and hydrology), although relationships with these variables and
occupancy, abundance or nesting success may differ among different grassland bird species (Fisher and
Davis 2010).

CRP grasslands generally provide favorable habitat for grassland birds, although vegetation
structure (e.g., high grass coverage vs. low grass coverage vs. bare patches) and plant species
composition, year-to-year variation in precipitation, and landowner management (e.g., haying), in
addition to landscape-level characteristics, influence suitability for various grassland bird species in the
UMRB (Johnson and Schwartz 1993). It should also be noted that CRP grasslands do not replace native
prairie with regard to either the vegetative or the bird communities; this is especially relevant to species of
conservation concern, such as Sprague’s pipit (Anthus spragueii) and Baird’s sparrow (Ammodramus
bairdii; Johnson and Schwartz 1993).

Switchgrass (Panicum virgatum) or other bioenergy grasslands as cellulosic biofuel crops could
also serve as potential suitable breeding habitat for grassland birds (Murray et al. 2003; Robertson et al.
2012b; Blank et al. 2014, 2015), although appropriate timing of harvest (i.e., after the breeding season is
complete) is critical to grassland bird productivity in these habitats. Abundances of many grassland birds

are higher in switchgrass fields than in row crops, but bird species showing positive relationships with
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taller grassland vegetation are those for which switchgrass is likely to be suitable habitat (Murray and
Best 2003; Roth et al. 2005). Late-summer harvest, however, can make switchgrass fields more suitable
for species favoring short-grass habitats, such as grasshopper sparrow (Admmodramus savannarum) and
horned lark (Eremophila alpestris) (Murray and Best 2003; Roth et al. 2005). Nevertheless, breeding bird
biodiversity in switchgrass is also not likely to reach levels supported by native prairies, which have more
varied vegetation and structural diversity, so conversion of native prairie to switchgrass or other
bioenergy grasslands is likely to negatively impact grassland birds as a whole (Robertson et al. 2012b;
Blank et al. 2014). In addition to breeding-season benefits to grassland birds, switchgrass fields are also
used as en route migration stopover habitat for migrating grassland birds (Robertson et al. 2012a), and
abundance and species richness for migrant grassland birds in switchgrass fields did not differ
significantly from those in grasslands with a composition of mixed grasses and forbs.

BECCS scenarios are likely to be coupled to development of renewable energy sources such as
wind, solar radiation, and hydropower (Figure 2). Wind energy development is likely to increase in the
future in the UMRB due to high and consistent winds (Fargione et al. 2012). Such development of wind
energy potential within the UMRB is likely to influence regional bird populations (Kuvlesky et al. 2007,
Smith and Dwyer 2016), and several studies have examined effects of wind farms on the regional
avifauna. Direct mortality of birds in the Northern Prairie region from collisions with turbines appears to
be relatively low. For example, (Osborn et al. 2000; Johnson et al. 2003) estimated bird mortalities at the
Buffalo Ridge Wind Resource Area (BRWRA) in southwestern Minnesota to range from 0.5-4.5
mortalities per turbine per year, with the majority of birds killed belonging to the Passeriformes. Graff et
al. (2016) studied wind farms in southern North Dakota and northern South Dakota and estimated
mortalities during the spring and early summer to range from 0.8-2.6 mortalities per MW of energy
produced, with waterfowl deaths constituting a majority of mortalities and a higher diversity of birds
being killed at turbines located in grasslands than at agricultural sites. Perhaps more problematic to bird
populations than direct mortalities are reduced abundances in habitats surrounding wind turbines (often

up to 800 m), resulting in lower occupancy or lower bird abundances in wind farm areas (Drewitt and
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Langston 2006; Stewart et al. 2007; Pearce-Higgins et al. 2009). Such reduced abundances in wind farm
habitats, however, do not necessarily occur for all species (Douglas et al. 2011). Within the Northern
Prairie region, Usgaard et al. (1997) found that raptor abundances within the BRWRA were similar to
other habitats within the region, but that raptor nest sites avoided areas where turbines were present.
Densities of grassland birds within CRP grasslands in the BRWRA were about 3-fold lower at 80 m than
at 180 m from turbines. Niemuth et al. (2013) found that occupancy of wetland sites by water birds and
shorebirds did not differ markedly between wind farm and non-wind farm sites in southern North Dakota
and northern South Dakota, although occupancy was slightly but consistently lower for a few species at
sites near turbines where agriculture was the dominant habitat on the landscape. Collectively, these data
suggest that site location of wind farms within the UMRB is likely to influence their impact on birds.
Placement of wind farms in agricultural or other disturbed habitats while avoiding undisturbed grassland
areas is likely to provide maximum benefits to grassland bird biodiversity (Kiesecker et al. 2011; Graff et
al. 2016). In this regard, Fargione et al. (2012) modeled bird habitat and bird abundances within the
Northern Great Plains to identify sites within the UMRB with high wind potential but relatively low
potential for impacting bird populations.

Wetlands in the UMRB, particularly within the Prairie Pothole Region (PPR) of the Dakotas, are
critical habitats for wetland-associated birds (Lehtinen et al. 1999; Naugle et al. 2001; Johnson et al.
2005; Mushet et al. 2014; Steen et al. 2016). Land use change has markedly impacted wetland habitats
and future climate and land use changes are projected to continue to negatively impact wetlands within
the region and their functionality, including impacts on such ecosystem services as water quality, carbon
sequestration and biodiversity (Whited et al. 2000; Johnson et al. 2010; Fennessy and Craft 2011;
Rashford et al. 2015). Current pressures to alter wetlands for row-crop production within the PPR have
resulted in recent average wetland loss rates of 0.28 - 0.35% per year (as well as across the UMRB,
Figure 4), with greater losses in central and eastern regions and lesser losses in western and northern
edges of the Dakotas (Johnston 2013). Coupled with loss of wetlands due to agricultural expansion in the

PPR, agricultural acres with tile drainage have also recently expanded recently, and this trend is likely to
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continue into the future. Expansion of tile drainage in agricultural areas alters wetland hydrology, reduces
surface water storage, increases nutrient turnover rates, increases effective drainage areas and increases
flows of surface water into stream and wetland systems (Blann et al. 2009). Thus, increasing tile drainage
is likely to compound wetland losses due to agricultural practices, shifting available wetland area away
from ephemeral and seasonal wetlands to semi-permanent and permanent wetlands and increasing
agricultural contaminant levels (Blann et al. 2009). Moreover, fluctuation of water levels in wetlands
within tilled agricultural lands may be 3-fold greater than in those in grasslands within the PPR, with
lesser fluctuation in more permanent wetlands (Euliss and Mushet 1996), and the increased surface water
flows in areas with tile drainage is likely to compound these fluctuations. Thus, land use changes within
the PPR are likely to markedly impact the suitability of wetlands for wetland-associated birds.

Habitat suitability models for wetland-associated birds suggest that unfragmented prairie-wetland
complexes provide more and better habitat than isolated wetlands within row-crop agricultural habitats in
the PPR (Naugle et al. 2001). Johnson et al. (2005) developed climate-change models for semi-permanent
wetlands in the PPR, projecting regional reductions in the amount of productive wetland habitat for
waterfowl and a shift of the most productive habitat to available wetlands in the eastern and northern
regions of the PPR. Expanding climate-change models to include surface water, groundwater, and
wetland vegetation dynamics suggested a substantial shrinkage and eastward shift of productive wetland
habitat for waterfowl (Johnson et al. 2010). More recent bioclimatic models also project loss of suitable
wetland habitat for wetland birds within the PPR (Steen et al. 2016). Rashford et al. (2015) modeled
climate and land use change within the PPR and their models suggested that the combined pressures of
current land use and climate change trends would reduce wetland productivity and suitable habitat for
wetland-associated species.

To project trends in biodiversity under future region-wide land use predictions, future studies
using spatially explicit predictive models to link abundances and distributions of grassland and wetland
bird species to changes in land cover and landscape configuration across the region are needed. Such

studies should focus on spatially-explicit land cover change scenarios (Sohl et al. 2014) using recent
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remotely-sensed land cover data, derived from sources such as classified Landsat imagery (e.g., USGS
National Land Cover Database or LANDFIRE). These studies will provide much better region-wide
projections for biodiversity responses to landscape change, including landscape change associated with
alternative BECCS scenarios within the UMRB. Models developed for the UMRB may be suitable for
application or extrapolation to other regions with similar agriculturally dominated landscapes and social

systems.
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